Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2303165121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38607932

RESUMO

Antimicrobial resistance was estimated to be associated with 4.95 million deaths worldwide in 2019. It is possible to frame the antimicrobial resistance problem as a feedback-control problem. If we could optimize this feedback-control problem and translate our findings to the clinic, we could slow, prevent, or reverse the development of high-level drug resistance. Prior work on this topic has relied on systems where the exact dynamics and parameters were known a priori. In this study, we extend this work using a reinforcement learning (RL) approach capable of learning effective drug cycling policies in a system defined by empirically measured fitness landscapes. Crucially, we show that it is possible to learn effective drug cycling policies despite the problems of noisy, limited, or delayed measurement. Given access to a panel of 15 [Formula: see text]-lactam antibiotics with which to treat the simulated Escherichia coli population, we demonstrate that RL agents outperform two naive treatment paradigms at minimizing the population fitness over time. We also show that RL agents approach the performance of the optimal drug cycling policy. Even when stochastic noise is introduced to the measurements of population fitness, we show that RL agents are capable of maintaining evolving populations at lower growth rates compared to controls. We further tested our approach in arbitrary fitness landscapes of up to 1,024 genotypes. We show that minimization of population fitness using drug cycles is not limited by increasing genome size. Our work represents a proof-of-concept for using AI to control complex evolutionary processes.


Assuntos
Anti-Infecciosos , Aprendizagem , Reforço Psicológico , Resistência Microbiana a Medicamentos , Ciclismo , Escherichia coli/genética
2.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562844

RESUMO

Dose-response curves that describe the relationship between antibiotic dose and growth rate in bacteria are commonly measured with optical density (OD) based assays. While being simple and high-throughput, any dose-dependent cell death dynamics are obscured, as OD assays in batch culture can only quantify a positive net change in cells. Time-kill experiments can be used to quantify cell death rates, but current techniques are extremely resource-intensive and may be biased by residual drug carried over into the quantification assay. Here, we report a novel, fluorescence-based time-kill assay leveraging resazurin as a viable cell count indicator. Our method improves upon previous techniques by greatly reducing the material cost and being robust to residual drug carry-over. We demonstrate our technique by quantifying a dose-response curve in Escherichia coli subject to cefotaxime, revealing dose-dependent death rates. We also show that our method is robust to extracellular debris and cell aggregation. Dose-response curves quantified with our method may provide a more accurate description of pathogen response to therapy, paving the way for more accurate integrated pharmacodynamic-pharmacokinetic studies.

3.
BMC Cancer ; 24(1): 437, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594603

RESUMO

BACKGROUND: Soft tissue sarcomas (STS), have significant inter- and intra-tumoral heterogeneity, with poor response to standard neoadjuvant radiotherapy (RT). Achieving a favorable pathologic response (FPR ≥ 95%) from RT is associated with improved patient outcome. Genomic adjusted radiation dose (GARD), a radiation-specific metric that quantifies the expected RT treatment effect as a function of tumor dose and genomics, proposed that STS is significantly underdosed. STS have significant radiomic heterogeneity, where radiomic habitats can delineate regions of intra-tumoral hypoxia and radioresistance. We designed a novel clinical trial, Habitat Escalated Adaptive Therapy (HEAT), utilizing radiomic habitats to identify areas of radioresistance within the tumor and targeting them with GARD-optimized doses, to improve FPR in high-grade STS. METHODS: Phase 2 non-randomized single-arm clinical trial includes non-metastatic, resectable high-grade STS patients. Pre-treatment multiparametric MRIs (mpMRI) delineate three distinct intra-tumoral habitats based on apparent diffusion coefficient (ADC) and dynamic contrast enhanced (DCE) sequences. GARD estimates that simultaneous integrated boost (SIB) doses of 70 and 60 Gy in 25 fractions to the highest and intermediate radioresistant habitats, while the remaining volume receives standard 50 Gy, would lead to a > 3 fold FPR increase to 24%. Pre-treatment CT guided biopsies of each habitat along with clip placement will be performed for pathologic evaluation, future genomic studies, and response assessment. An mpMRI taken between weeks two and three of treatment will be used for biological plan adaptation to account for tumor response, in addition to an mpMRI after the completion of radiotherapy in addition to pathologic response, toxicity, radiomic response, disease control, and survival will be evaluated as secondary endpoints. Furthermore, liquid biopsy will be performed with mpMRI for future ancillary studies. DISCUSSION: This is the first clinical trial to test a novel genomic-based RT dose optimization (GARD) and to utilize radiomic habitats to identify and target radioresistance regions, as a strategy to improve the outcome of RT-treated STS patients. Its success could usher in a new phase in radiation oncology, integrating genomic and radiomic insights into clinical practice and trial designs, and may reveal new radiomic and genomic biomarkers, refining personalized treatment strategies for STS. TRIAL REGISTRATION: NCT05301283. TRIAL STATUS: The trial started recruitment on March 17, 2022.


Assuntos
Temperatura Alta , Sarcoma , Humanos , 60570 , Sarcoma/diagnóstico por imagem , Sarcoma/genética , Sarcoma/radioterapia , Genômica , Doses de Radiação
4.
PLoS Comput Biol ; 20(2): e1011878, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38386690

RESUMO

Mutant selection windows (MSWs), the range of drug concentrations that select for drug-resistant mutants, have long been used as a model for predicting drug resistance and designing optimal dosing strategies in infectious disease. The canonical MSW model offers comparisons between two subtypes at a time: drug-sensitive and drug-resistant. In contrast, the fitness landscape model with N alleles, which maps genotype to fitness, allows comparisons between N genotypes simultaneously, but does not encode continuous drug response data. In clinical settings, there may be a wide range of drug concentrations selecting for a variety of genotypes in both cancer and infectious diseases. Therefore, there is a need for a more robust model of the pathogen response to therapy to predict resistance and design new therapeutic approaches. Fitness seascapes, which model genotype-by-environment interactions, permit multiple MSW comparisons simultaneously by encoding genotype-specific dose-response data. By comparing dose-response curves, one can visualize the range of drug concentrations where one genotype is selected over another. In this work, we show how N-allele fitness seascapes allow for N * 2N-1 unique MSW comparisons. In spatial drug diffusion models, we demonstrate how fitness seascapes reveal spatially heterogeneous MSWs, extending the MSW model to more fully reflect the selection of drug resistant genotypes. Furthermore, using synthetic data and empirical dose-response data in cancer, we find that the spatial structure of MSWs shapes the evolution of drug resistance in an agent-based model. By simulating a tumor treated with cyclic drug therapy, we find that mutant selection windows introduced by drug diffusion promote the proliferation of drug resistant cells. Our work highlights the importance and utility of considering dose-dependent fitness seascapes in evolutionary medicine.


Assuntos
Neoplasias , Humanos , Mutação , Genótipo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Seleção Genética
5.
bioRxiv ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38077036

RESUMO

Staphylococcus aureus causes endocarditis, osteomyelitis, and bacteremia. Clinicians often prescribe vancomycin as an empiric therapy to account for methicillin-resistant S. aureus (MRSA) and narrow treatment based on culture susceptibility results. However, these results reflect a single time point before empiric treatment and represent a limited subset of the total bacterial population within the patient. Thus, while they may indicate that the infection is susceptible to a particular drug, this recommendation may no longer be accurate during therapy. Here, we addressed how antibiotic susceptibility changes over time by accounting for evolution. We evolved 18 methicillin-susceptible S. aureus (MSSA) populations under increasing vancomycin concentrations until they reached intermediate resistance levels. Sequencing revealed parallel mutations that affect cell membrane stress response and cell-wall biosynthesis. The populations exhibited repeated cross-resistance to daptomycin and varied responses to meropenem, gentamicin, and nafcillin. We accounted for this variability by deriving likelihood estimates that express a population's probability of exhibiting a drug response following vancomycin treatment. Our results suggest antistaphylococcal penicillins are preferable first-line treatments for MSSA infections but also highlight the inherent uncertainty that evolution poses to effective therapies. Infections may take varied evolutionary paths; therefore, considering evolution as a probabilistic process should inform our therapeutic choices.

7.
Sci Rep ; 13(1): 19256, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37935813

RESUMO

The neutrophil to lymphocyte ratio (NTLR) and absolute lymphocyte count (ALC) recovery are prognostic across many cancers. We investigated whether NLTR predicts SBRT success or survival in a metastatic sarcoma cohort treated with SBRT from 2014 and 2020 (N = 42). Wilcox Signed Rank Test and Friedman Test compare NTLR changes with local failure vs. local control (N = 138 lesions). Cox analyses identified factors associated with overall survival. If local control was successful, NLTR change was not significant (p = 0.30). However, NLTR significantly changed in patients with local failure (p = 0.027). The multivariable Cox model demonstrated higher NLTR before SBRT was associated with worse overall survival (p = 0.002). The optimal NTLR cut point was 5 (Youden index: 0.418). One-year overall survival in SBRT metastatic sarcoma cohort was 47.6% (CI 34.3%-66.1%). Patients with an NTLR above 5 had a one-year overall survival of 37.7% (21.4%-66.3%); patients with an NTLR below 5 had a significantly improved overall survival of 63% (43.3%-91.6%, p = 0.014). Since NTLR at the time of SBRT was significantly associated with local control success and overall survival in metastatic sarcoma treated with SBRT, future efforts to reduce tumor inhibitory microenvironment factors and improve lymphocyte recovery should be investigated.


Assuntos
Radiocirurgia , Sarcoma , Humanos , Resultado do Tratamento , Neutrófilos , Estudos Retrospectivos , Sarcoma/radioterapia , Sarcoma/cirurgia , Linfócitos , Microambiente Tumoral
8.
medRxiv ; 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37745365

RESUMO

Background: Treatment decision-making in oropharyngeal squamous cell carcinoma (OPSCC) includes clinical stage, HPV status, and smoking history. Despite improvements in staging with separation of HPV-positive and -negative OPSCC in AJCC 8th edition (AJCC8), patients are largely treated with a uniform approach, with recent efforts focused on de-intensification in low-risk patients. We have previously shown, in a pooled analysis, that the genomic adjusted radiation dose (GARD) is predictive of radiation treatment benefit and can be used to guide RT dose selection. We hypothesize that GARD can be used to predict overall survival (OS) in HPV-positive OPSCC patients treated with radiotherapy (RT). Methods: Gene expression profiles (Affymetrix Clariom D) were analyzed for 234 formalin-fixed paraffin-embedded samples from HPV-positive OPSCC patients within an international, multi-institutional, prospective/retrospective observational study including patients with AJCC 7th edition stage III-IVb. GARD, a measure of the treatment effect of RT, was calculated for each patient as previously described. In total, 191 patients received primary RT definitive treatment (chemoradiation or RT alone, and 43 patients received post-operative RT. Two RT dose fractionations were utilized for primary RT cases (70 Gy in 35 fractions or 69.96 Gy in 33 fractions). Median RT dose was 70 Gy (range 50.88-74) for primary RT definitive cases and 66 Gy (range 44-70) for post-operative RT cases. The median follow up was 46.2 months (95% CI, 33.5-63.1). Cox proportional hazards analyses were performed with GARD as both a continuous and dichotomous variable and time-dependent ROC analyses compared the performance of GARD with the NRG clinical nomogram for overall survival. Results: Despite uniform radiation dose utilization, GARD showed significant heterogeneity (range 30-110), reflecting the underlying genomic differences in the cohort. On multivariable analysis, each unit increase in GARD was associated with an improvement in OS (HR = 0.951 (0.911, 0.993), p = 0.023) compared to AJCC8 (HR = 1.999 (0.791, 5.047)), p = 0.143). ROC analysis for GARD at 36 months yielded an AUC of 80.6 (69.4, 91.9) compared with an AUC of 73.6 (55.4, 91.7) for the NRG clinical nomogram. GARD≥64.2 was associated with improved OS (HR = 0.280 (0.100, 0.781), p = 0.015). In a virtual trial, GARD predicts that uniform RT dose de-escalation results in overall inferior OS but proposes two separate genomic strategies where selective RT dose de-escalation in GARD-selected populations results in clinical equipoise. Conclusions: In this multi-institutional cohort of patients with HPV-positive OPSCC, GARD predicts OS as a continuous variable, outperforms the NRG nomogram and provides a novel genomic strategy to modern clinical trial design. We propose that GARD, which provides the first opportunity for genomic guided personalization of radiation dose, should be incorporated in the diagnostic workup of HPV-positive OPSCC patients.

9.
bioRxiv ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732215

RESUMO

Mutant selection windows (MSWs), the range of drug concentrations that select for drug-resistant mutants, have long been used as a model for predicting drug resistance and designing optimal dosing strategies in infectious disease. The canonical MSW model offers comparisons between two subtypes at a time: drug-sensitive and drug-resistant. In contrast, the fitness landscape model with N alleles, which maps genotype to fitness, allows comparisons between N genotypes simultaneously, but does not encode continuous drug response data. In clinical settings, there may be a wide range of drug concentrations selecting for a variety of genotypes. Therefore, there is a need for a more robust model of the pathogen response to therapy to predict resistance and design new therapeutic approaches. Fitness seascapes, which model genotype-by-environment interactions, permit multiple MSW comparisons simultaneously by encoding genotype-specific dose-response data. By comparing dose-response curves, one can visualize the range of drug concentrations where one genotype is selected over another. In this work, we show how N-allele fitness seascapes allow for N*2N-1 unique MSW comparisons. In spatial drug diffusion models, we demonstrate how fitness seascapes reveal spatially heterogeneous MSWs, extending the MSW model to more accurately reflect the selection fo drug resistant genotypes. Furthermore, we find that the spatial structure of MSWs shapes the evolution of drug resistance in an agent-based model. Our work highlights the importance and utility of considering dose-dependent fitness seascapes in evolutionary medicine.

10.
Phys Med Biol ; 68(16)2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37459862

RESUMO

Objective.Radiation-induced cell death is a complex process influenced by physical, chemical and biological phenomena. Although consensus on the nature and the mechanism of the bystander effect were not yet made, the immune process presumably plays an important role in many aspects of the radiotherapy including the bystander effect. A mathematical model of immune response during and after radiation therapy is presented.Approach.Immune response of host body and immune suppression of tumor cells are modelled with four compartments in this study; viable tumor cells, T cell lymphocytes, immune triggering cells, and doomed cells. The growth of tumor was analyzed in two distinctive modes of tumor status (immune limited and immune escape) and its bifurcation condition.Main results.Tumors in the immune limited mode can grow only up to a finite size, named as terminal tumor volume analytically calculated from the model. The dynamics of the tumor growth in the immune escape mode is much more complex than the tumors in the immune limited mode especially when the status of tumor is close to the bifurcation condition. Radiation can kill tumor cells not only by radiation damage but also by boosting immune reaction.Significance.The model demonstrated that the highly heterogeneous dose distribution in spatially fractionated radiotherapy (SFRT) can make a drastic difference in tumor cell killing compared to the homogeneous dose distribution. SFRT cannot only enhance but also moderate the cell killing depending on the immune response triggered by many factors such as dose prescription parameters, tumor volume at the time of treatment and tumor characteristics. The model was applied to the lifted data of 67NR tumors on mice and a sarcoma patient treated multiple times over 1200 days for the treatment of tumor recurrence as a demonstration.


Assuntos
Neoplasias , Camundongos , Animais , Neoplasias/radioterapia , Fracionamento da Dose de Radiação , Imunidade , Radioterapia/métodos
11.
JCO Clin Cancer Inform ; 7: e2200173, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37369090

RESUMO

PURPOSE: Improved survival prediction and risk stratification in non-small-cell lung cancer (NSCLC) would lead to better prognosis counseling, adjuvant therapy selection, and clinical trial design. We propose the persistent homology (PHOM) score, the radiomic quantification of solid tumor topology, as a solution. MATERIALS AND METHODS: Patients diagnosed with stage I or II NSCLC primarily treated with stereotactic body radiation therapy (SBRT) were selected (N = 554). The PHOM score was calculated for each patient's pretreatment computed tomography scan (October 2008-November 2019). PHOM score, age, sex, stage, Karnofsky Performance Status, Charlson Comorbidity Index, and post-SBRT chemotherapy were predictors in the Cox proportional hazards models for OS and cancer-specific survival. Patients were split into high- and low-PHOM score groups and compared using Kaplan-Meier curves for overall survival (OS) and cumulative incidence curves for cause-specific death. Finally, we generated a validated nomogram to predict OS, which is publicly available at Eashwarsoma.Shinyapps. RESULTS: PHOM score was a significant predictor for OS (hazard ratio [HR], 1.17; 95% CI, 1.07 to 1.28) and was the only significant predictor for cancer-specific survival (1.31; 95% CI, 1.11 to 1.56) in the multivariable Cox model. The median survival for the high-PHOM group was 29.2 months (95% CI, 23.6 to 34.3), which was significantly worse compared with the low-PHOM group (45.4 months; 95% CI, 40.1 to 51.8; P < .001). The high-PHOM group had a significantly greater chance of cancer-specific death at post-treatment month 65 (0.244; 95% CI, 0.192 to 0.296) compared with the low-PHOM group (0.171; 95% CI, 0.123 to 0.218; P = .029). CONCLUSION: The PHOM score is associated with cancer-specific survival and predictive of OS. Our developed nomogram can be used to inform clinical prognosis and assist in making post-SBRT treatment considerations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Nomogramas , Radiocirurgia/métodos , Tomografia Computadorizada por Raios X
12.
Semin Radiat Oncol ; 33(3): 221-231, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37331777

RESUMO

The genomic era has significantly changed the practice of clinical oncology. The use of genomic-based molecular diagnostics including prognostic genomic signatures and new-generation sequencing has become routine for clinical decisions regarding cytotoxic chemotherapy, targeted agents and immunotherapy. In contrast, clinical decisions regarding radiation therapy (RT) remain uninformed about the genomic heterogeneity of tumors. In this review, we discuss the clinical opportunity to utilize genomics to optimize RT dose. Although from the technical perspective, RT has been moving towards a data-driven approach, RT prescription dose is still based on a one-size-fits all approach, with most RT dose based on cancer diagnosis and stage. This approach is in direct conflict with the realization that tumors are biologically heterogeneous, and that cancer is not a single disease. Here, we discuss how genomics can be integrated into RT prescription dose, the clinical potential for this approach and how genomic-optimization of RT dose could lead to new understanding of the clinical benefit of RT.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/radioterapia , Neoplasias/patologia , Oncologia , Prognóstico , Genômica
13.
Res Sq ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333401

RESUMO

The neutrophil to lymphocyte ratio (NTLR) and absolute lymphocyte count (ALC) recovery are prognostic across many cancers. We investigated whether NLTR predicts SBRT success or survival in a metastatic sarcoma cohort treated with SBRT from 2014 and 2020 (N = 42). Wilcox Signed Rank Test and Friedman Test compare NTLR changes with local failure vs. local control (N = 138 lesions). Cox analyses identified factors associated with overall survival. If local control was successful, NLTR change was not significant (p = 0.30). However, NLTR significantly changed in patients local failure (p = 0.027). The multivariable Cox model demonstrated higher NLTR before SBRT was associated with worse overall survival (p = 0.002). The optimal NTLR cut point was 5 (Youden index: 0.418). One-year overall survival in SBRT metastatic sarcoma cohort was 47.6% (CI 34.3%-66.1%). Patients with an NTLR above 5 had a one-year overall survival of 37.7% (21.4%-66.3%); patients with an NTLR below 5 had a significantly improved overall survival of 63% (43.3%-91.6%, p = 0.014). Since NTLR at the time of SBRT was significantly associated with local control success and overall survival in metastatic sarcoma treated with SBRT, future efforts to reduce tumor inhibitory microenvironment factors and improved lymphocyte recovery should be investigated.

14.
NPJ Precis Oncol ; 7(1): 38, 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076665

RESUMO

Precision medicine offers remarkable potential for the treatment of cancer, but is largely focused on tumors that harbor actionable mutations. Gene expression signatures can expand the scope of precision medicine by predicting response to traditional (cytotoxic) chemotherapy agents without relying on changes in mutational status. We present a new signature extraction method, inspired by the principle of convergent phenotypes, which states that tumors with disparate genetic backgrounds may evolve similar phenotypes independently. This evolutionary-informed method can be utilized to produce consensus signatures predictive of response to over 200 chemotherapeutic drugs found in the Genomics of Drug Sensitivity in Cancer (GDSC) Database. Here, we demonstrate its use by extracting the Cisplatin Response Signature (CisSig). We show that this signature can predict cisplatin response within carcinoma-based cell lines from the GDSC database, and expression of the signatures aligns with clinical trends seen in independent datasets of tumor samples from The Cancer Genome Atlas (TCGA) and Total Cancer Care (TCC) database. Finally, we demonstrate preliminary validation of CisSig for use in muscle-invasive bladder cancer, predicting overall survival in a small cohort of patients who undergo cisplatin-containing chemotherapy. This methodology can be used to produce robust signatures that, with further clinical validation, may be used for the prediction of traditional chemotherapeutic response, dramatically increasing the reach of personalized medicine in cancer.

15.
J Math Biol ; 86(5): 68, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37017776

RESUMO

Theoretical and applied cancer studies that use individual-based models (IBMs) have been limited by the lack of a mathematical formulation that enables rigorous analysis of these models. However, spatial cumulant models (SCMs), which have arisen from theoretical ecology, describe population dynamics generated by a specific family of IBMs, namely spatio-temporal point processes (STPPs). SCMs are spatially resolved population models formulated by a system of differential equations that approximate the dynamics of two STPP-generated summary statistics: first-order spatial cumulants (densities), and second-order spatial cumulants (spatial covariances). We exemplify how SCMs can be used in mathematical oncology by modelling theoretical cancer cell populations comprising interacting growth factor-producing and non-producing cells. To formulate model equations, we use computational tools that enable the generation of STPPs, SCMs and mean-field population models (MFPMs) from user-defined model descriptions (Cornell et al. Nat Commun 10:4716, 2019). To calculate and compare STPP, SCM and MFPM-generated summary statistics, we develop an application-agnostic computational pipeline. Our results demonstrate that SCMs can capture STPP-generated population density dynamics, even when MFPMs fail to do so. From both MFPM and SCM equations, we derive treatment-induced death rates required to achieve non-growing cell populations. When testing these treatment strategies in STPP-generated cell populations, our results demonstrate that SCM-informed strategies outperform MFPM-informed strategies in terms of inhibiting population growths. We thus demonstrate that SCMs provide a new framework in which to study cell-cell interactions, and can be used to describe and perturb STPP-generated cell population dynamics. We, therefore, argue that SCMs can be used to increase IBMs' applicability in cancer research.


Assuntos
Ecologia , Neoplasias , Humanos , Dinâmica Populacional , Crescimento Demográfico , Modelos Biológicos
16.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047714

RESUMO

The ever-changing nature of cancer poses the most difficult challenge oncologists face today. Cancer's remarkable adaptability has inspired many to work toward understanding the evolutionary dynamics that underlie this disease in hopes of learning new ways to fight it. Eco-evolutionary dynamics of a tumor are not accounted for in most standard treatment regimens, but exploiting them would help us combat treatment-resistant effectively. Here, we outline several notable efforts to exploit these dynamics and circumvent drug resistance in cancer.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Resistência a Medicamentos , Evolução Biológica
17.
bioRxiv ; 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945602

RESUMO

In the last few decades, interest in graph-based analysis of biological networks has grown substantially. Protein-protein interaction networks are one of the most common biological networks, and represent the molecular relationships between every known protein and every other known protein. Integration of these interactomic data into bioinformatic pipelines may increase the translational potential of discoveries made through analysis of multi-omic datasets. Crosstalkr provides a unified toolkit for drug target and disease subnetwork identification, two of the most common uses of protein protein interaction networks. First, crosstalkr enables users to download and leverage high-quality protein-protein interaction networks from online repositories. Users can then filter these large networks into manageable subnetworks using a variety of methods. For example, network filtration can be done using random walks with restarts, starting at the user-provided seed proteins. Affinity scores from a given random walk with restarts are compared to a bootstrapped null distribution to assess statistical significance. Random walks are implemented using sparse matrix multiplication to facilitate fast execution. Next, users can perform in-silico repression experiments to assess the relative importance of nodes in their network. At this step, users can supply protein or gene expression data to make node rankings more meaningful. The default behavior evaluates the human interactome. However, users can evaluate more than 1000 non-human protein-protein interaction networks as a result of integration with StringDB. It is a free, open-source R package designed to allow users to integrate functional analysis using the protein-protein interaction network into existing bioinformatic pipelines. A beta version of crosstalkr available on CRAN (https://cran.rstudio.com/web/packages/crosstalkr/index.html).

18.
J Math Biol ; 86(4): 50, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36864131

RESUMO

Density dependence is important in the ecology and evolution of microbial and cancer cells. Typically, we can only measure net growth rates, but the underlying density-dependent mechanisms that give rise to the observed dynamics can manifest in birth processes, death processes, or both. Therefore, we utilize the mean and variance of cell number fluctuations to separately identify birth and death rates from time series that follow stochastic birth-death processes with logistic growth. Our nonparametric method provides a novel perspective on stochastic parameter identifiability, which we validate by analyzing the accuracy in terms of the discretization bin size. We apply our method to the scenario where a homogeneous cell population goes through three stages: (1) grows naturally to its carrying capacity, (2) is treated with a drug that reduces its carrying capacity, and (3) overcomes the drug effect to restore its original carrying capacity. In each stage, we disambiguate whether the dynamics occur through the birth process, death process, or some combination of the two, which contributes to understanding drug resistance mechanisms. In the case of limited sample sizes, we provide an alternative method based on maximum likelihood and solve a constrained nonlinear optimization problem to identify the most likely density dependence parameter for a given cell number time series. Our methods can be applied to other biological systems at different scales to disambiguate density-dependent mechanisms underlying the same net growth rate.


Assuntos
Ecologia , Contagem de Células , Dinâmica Populacional , Tamanho da Amostra , Fatores de Tempo
19.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36993598

RESUMO

Evolution is a stochastic yet inevitable process that lies at the heart of biology yet in the multi-cellular environments within patients, ecological complexities arise via heterogeneity and microenvironments. The interplay of ecology and mutation is thus fundamental to predicting the evolution of complex diseases and engineering optimal treatment solutions. As experimental evidence of ecological interactions between disease agents continues to grow, so does the need for evolutionary theory and modeling that incorporates these interaction effects. Inspired by experimental cell biology, we transform the variables in the interaction payoff matrix to encode cell-cell interactions in our mathematical approach as growth-rate modifying, frequency-dependent interactions. In this way, we can show the extent to which the presence of these cell-extrinsic ecological interactions can modify the evolutionary trajectories that would be predicted from cell-intrinsic properties alone. To do this we form a Fokker-Planck equation for a genetic population undergoing diffusion, drift, and interactions and generate a novel, analytic solution for the stationary distribution. We use this solution to determine when these interactions can modify evolution in such ways as to maintain, mask, or mimic mono-culture fitness differences. This work has implications for the interpretation and understanding of experimental and patient evolution and is a result that may help to explain the abundance of apparently neutral evolution in cancer systems and heterogeneous populations in general. In addition, the derivation of an analytical result for stochastic, ecologically dependent evolution paves the way for treatment approaches requiring knowledge of a stationary solution for the development of control protocols.

20.
bioRxiv ; 2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36993631

RESUMO

Alamar Blue (AB) has become an increasingly popular reagent of choice for cell viability assays. We chose AB over other reagents such as MTT and Cell-Titer Glo due to its cost effectiveness and its ability to be a nondestructive assay. While analyzing the effect of osimertinib, an EGFR inhibitor on the non-small cell lung cancer cell line, PC-9, we noticed unexpected right-shifts of dose response curves as compared to the curve obtained by Cell Titer Glo assay. Here, we describe our modified AB assay method to avoid right shift right shift in dose response curve. Unlike some of the redox drugs that were reported to directly affected AB reading, osimertinib itself did not directly increase AB reading. Yet, the removal of the drug containing medium prior to AB addition eliminated falsely increased reading giving comparable dose response curve as the one determined by Cell Titer Glo assay. When a panel of 11 drugs were assessed, we found that this modified AB assay eliminated unexpected similar right shifts detected in other epidermal growth factor receptor (EGFR) inhibitors. We also found that plate-to-plate variability can be minimized by adding an appropriate concentration of rhodamine B solution to the assay plates to calibrate fluorimeter sensitivity. This calibration method also enables a continuous longitudinal assay to monitor cell growth or recovery from drug toxicity over time. Our new modified AB assay is expected to provide accurate in vitro measurement of EGFR targeted therapies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...